- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Ayala, David (2)
-
Mazel-Gee, Aaron (2)
-
Rozenblyum, Nick (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We undertake a systematic study of the Hochschild homology, i.e. (the geometric realization of) the cyclic nerve, of -categories (and more generally of category-objects in an ∞-category), as a version of factorization homology. In order to do this, we codify -categories in terms of quiver representations in them. By examining a universal instance of such Hochschild homology, we explicitly identify its natural symmetries, and construct a non-stable version of the cyclotomic trace map. Along the way we give a unified account of the cyclic, paracyclic, and epicyclic categories. We also prove that this gives a combinatorial description of the case of factorization homology as presented in [4], which parametrizes -categories by solidly 1-framed stratified spaces.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Ayala, David; Mazel-Gee, Aaron; Rozenblyum, Nick (, Memoirs of the American Mathematical Society)We introduce a theory of stratifications of noncommutative stacks (i.e., presentable stable -categories), and we prove a reconstruction theorem that expresses them in terms of their strata and gluing data. This reconstruction theorem is compatible with symmetric monoidal structures, and with more general operadic structures such as -monoidal structures. We also provide a suite of fundamental operations for constructing new stratifications from old ones: restriction, pullback, quotient, pushforward, and refinement. Moreover, we establish a dual form of reconstruction; this is closely related to Verdier duality and reflection functors, and gives a categorification of Möbius inversion. Our main application is to equivariant stable homotopy theory: for any compact Lie group , we give a symmetric monoidal stratification of genuine -spectra. In the case that is finite, this expresses genuine -spectra in terms of their geometric fixedpoints (as homotopy-equivariant spectra) and gluing data therebetween (which are given by proper Tate constructions). We also prove an adelic reconstruction theorem; this applies not just to ordinary schemes but in the more general context of tensor-triangular geometry, where we obtain a symmetric monoidal stratification over the Balmer spectrum. We discuss the particular example of chromatic homotopy theory.more » « less
An official website of the United States government
